Estimación de un índice de eficiencia para la rama judicial en Colombia: una aproximación mediante análisis de envoltura de datos
Keywords:
rama judicial, circuitos judiciales, eficiencia, programación, economía matemática, envoltura de datosAbstract
En este artículo se propone una medida para la Rama Judicial en Colombia para cuantificar su eficiencia. Se explica por qué es importante la eficiencia, el método escogido para estimarla y la robustez de los resultados encontrados. También se utilizan herramientas de programación de computadores que reflejan su importancia en la economía matemática moderna, además de facilitar y brindar mayores libertades en los cálculos de modelos complejos.
Los resultados muestran el comportamiento de los circuitos judiciales escogidos a través de los índices encontrados. Adicionalmente, queda abierta la posibilidad de realizar investigaciones futuras que complementen el análisis de envoltura de datos.
References
Andrews D. & Pregibon, D. (1978). Finding the Outliers that Matter. Journal of the
Royal Statistical Society, 40(1), 85-93.
Azadeh, A., et al. (2011). An Integrated Data Envelopment Analysis-Artificial
Neural Network-Rough Set Algorithm for assessment of personnel efficiency.
Expert Systems with Applications, 38(3), 1364-1373.
Banker, R., Charnes, A. & Cooper, W. (1984). Some Models for Estimating
Technical and Scale Inefficiencies in Data Envelopment Analysis. Management
Science, 30(9), 1078-1092.
Bogetoft, P. & Otto, L. (2011). Benchmarking with DEA, SFA, and R. New York:
Stanford University.
Bogetoft, P. & Otto, L. (2015). Benchmark and Frontier Analysis Using DEA and
SFA. R Foundation for Statistical Computing, Vienna, Austria. Disponible en:
https://cran.r-project.org/web/packages/Benchmarking/index.html
Charnes, A., Cooper, W. & Rhodes, E. (1978). Measuring the Efficiency of Decision
Making Units. European Journal of Operational Research, 2, 429-444.
Charnes, A., Cooper, W., Seiford, L. & Stutz, J. (1982). A Multiplicative Model for
Efficiency Analysis. Socio-Economic Planning Sciences, 16(5), 223-224.
Coelli, T. (1996). A Guide to DEAP Version 2.1: A Data Envelopment Analysis (Computer)
Program. Centre for Efficiency and Productivity Analysis (CEPA) Working Paper No. 8.
Debreu, G. (1951). The Coefficient of Resource Utilization. Econometrica, 19(3),
-292.
Dimitrova-Grajzl, V., et al. (2012). Court Output, Judicial Staffing, and the
Demand for Court Services: Evidence from Slovenian Courts of First Instance.
International Review of Law and Economics, 32(1), 19-29.
Dimitrova-Grajzl, V., et al. (2016). Courts in a Transition Economy: Case
Disposition and the Quantity-Quality Tradeoff in Bulgaria. Economic Systems,
(1), 19-38. https://doi.org/10.1016/j.ecosys.2015.09.002
Farrel, M. (1957). The Measurement of Productive Efficiency. Journal of the Royal
Statistical Society, 120(3), 253-290.
Gholam, A. (2017). Impact of Outliers in Data Envelopment Analysis. Int. J.
Industrial Mathematics, 9(4), 319-332.
Gillespie, R. (1976). The Production of Court Services: Analysis of Scale Effects
and Other Factors. The Journal of Legal Studies, 5(2), 243-265.
Hernández, V. (2016). Análisis de la eficiencia relativa en el sistema judicial colombiano
como funciones de producción, mediante análisis envolvente de datos (DEA) (Tesis de
maestría). Universidad Distrital Francisco José de Caldas, Colombia.
Johnstone, I. & Titterington, D. (2009). Statistical Challenges of HighDimensional Data. Transactions. Series A, Mathematical, physical, and engineering
sciences, 367(1906), 4237-4253.
Kneip, A., et al. (2010). A computationally efficient, consistent bootstrap for inference
with non-parametric DEA estimators. Computational Economics, 38(4), 483-515.
Koopmans, T. (1951). An Analysis of Production as an Efficient Combination of Activities.
En T. Koopmans (Ed.), Activity Analysis of Production and Allocation (Cowles Commission for
Research in Economics, Monograph 13). New York: John- Wiley and Sons, Inc.
Murrel, P. (2001). Demand and Supply in Romanian Commercial Courts:
Generating Information for Institutional Reform. IRIS Center _ Maryland
University. https://doi.org/10.2139/ssrn.280428
20. Newman, P. (2016 [1987]). Convexity. En J. Eatwell & M. Milgrate The New
Palgrave: A Dictionary of Economics. London: Palgrave Macmillan.
North, D. (1992). Transaction Costs, Institutions, and Economic Performance. USA: ICS Press.
Paris, Q. (2011). Economic Foundations of Symmetric Programming. USA: Cambridge
University Press.
Rapposelli, A. & Nissi, E. (2012). Analyzing Industrial Accidents in European Countries
Using Data Envelopment Analysis. AIEL Series in Labour Economics, 6, 93-101.
Ricardo, R. (2016). La política de descongestión judicial 2009-2014, un costoso e ineficiente
esfuerzo. Revista de Derecho Público, 36. http://dx.doi.org/10.15425/redepub.36.2016.06
Seiford, L. & Zhu, J. (1999). An Investigation of Returns to Scale in Data Envelopment
Analysis. Omega: The International Journal of Management Science, 27(1), 1-11.
Shepherd, R. (1970). Theory of Cost and Production Functions. USA: Princeton
University Press.
Simar, L. & Wilson, P. (2002). Non-parametric tests of returns to scale. European
Journal of Operational Research, 139, 115-132.
Simm, J. & Besstremyannaya, G. (2016).rDEA: Robust Data Envelopment
Analysis (DEA) for R. R Foundation for Statistical Computing, Vienna, Austria.
Disponible en: https://cran.r-project.org/web/packages/rDEA/index.html
Voigt, S. (2016). Determinants of Judicial Efficiency: A Survey. Eur J Law Econ,
, 183-208.
Zhu, J. (2009). Quantitative Models for Performance Evaluation and Benchmarking:
Data Envelopment Analysis with Spreadsheets (Segunda ed.). USA: Springer.
Published
How to Cite
Issue
Section
Copyright (c) 2020 Intercambio. Revista de Estudiantes de Economía
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.